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About second kind continuous chirality measures.
1. Planar sets
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The chirality index of a d-dimensional set of n points is defined as the sum of the n
squared distances between the vertices of the set and those of its inverted image, normalized
to 4T/d, T being the inertia of the set. The index is computed after minimization of the sum
of the squared distances with respect to all rotations and translations and all permutations
between equivalent vertices. The properties of the chiral index are examined for planar sets.
The most achiral triangles are obtained analytically for all equivalence situations: one, two,
and three equivalent vertices. These triangles are different from those obtained by Weinberg
and Mislow with distance functions.

1. Introduction

Continuous chirality measures are being increasingly used in physical organic
chemistry [2,6–9,12] and various theoretical studies on continuous chirality have been
performed [1,3–5,10,13,15–19]. Two kinds of chirality measures are usually consid-
ered: the set is compared to an achiral reference one (first kind), or is compared to
its inverted image (second kind). For the latter, it is obvious that any similarity index
between two compounds can be used as a chiral index, the second compound being
an enantiomer of the first one. Thus, there are potentially many second kind chiral
indices [11].

One of the simplest ones is obtained when the optimal superposition of the
enantiomers is measured with the minimized sum of the n squared distances between
the vertices of the set and its inverted image, the minimization being performed with
respect to all rotations and translations. Although this approach is acceptable when
all vertices are unequivalent (i.e., each vertex has one color and all the n colors are
different), it must be modified if at least two vertices have the same colour. For
example, the bromochloromethane CBrClH2 has five atoms, and among them two are
chemically equivalent, namely, the hydrogens Ha and Hb. Superimposing the two
enantiomers with the trivial correspondence C↔ C′, Br↔ Br′, Cl ↔ Cl′, Ha↔ Ha′

and Hb ↔ Hb′ cannot lead to a null sum of squared distances even if the conformer
is perfectly achiral. However, modifying the correspondence such that Ha↔ Hb′ and
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Hb ↔ Ha′ leads indeed to a null sum of squared distances for a perfectly achiral
conformer. Thus the sum of the squared distances must be minimized for all rotations
and translations and all allowed permutations.

In order to have a chiral index not depending on the size of the system, the
minimized sum of the squares is normalized to 4T/d, T being the inertia of the set
and d being the space dimension.

2. Notations and general properties

Let X0 and X1 be two n rows and d columns arrays of coordinates. X0 is
the fixed set and X1 is to move. The quote will denote the transposition operator.
All vectors are assumed to be written as one column matrices. The trace and the
determinant operators will be denoted Tr and Det, respectively. Let D2 be the sum
of the squared distances and Y1 be the rotated and translated image of X1. We have
D2 = Tr((X0 − Y1)(X0 − Y1)′). As well known, the minimized D2 for rotation plus
translation is obtained when both X0 and X1 are centered before computing the optimal
rotation, and this remains true when X1 is an inverted image of X0. Thus, translations
will be no longer considered, and the centering condition will not be assumed unless
otherwise mentioned. When needed, this centering condition will be written 1′X0 = 0
and 1′X1 = 0, 0 being a n rows and d columns matrix, and 1 being the d-dimensional
vector containing all elements equal to 1. It will be clear from the context than this
vector cannot be confused with the real value 1. The following matrices will be used:
V00 = X ′0X0, V11 = X ′1X1, V10 = X ′1X0 and V01 = V ′10. Let T = (T0 + T1)/2 with
T0 = Tr(V00) and T1 = Tr(V11) being the respective inertia of X0 and X1, reducing
to the usual inertia when the arrays are centered. The identity matrix is I , and R is a
rotation matrix, such that Y1 = X1R

′.
The correspondence between X0 and X1 will be handled via an n-dimensional

square permutation matrix P . Let Z1 = PY1. When X1 is the inverted image of X0

and when the centering condition is true, the chiral index is

Chi = D2/(4T/d) (1)

with D2 = Tr((X0 − PX1R
′)(X0 − PX1R

′)′) being minimized over all rotations R
and allowed permutations P .

The number of allowed permutations being finite, the continuity of the chiral
index for X0 is deduced from the continuity properties of the trace operator.

Writing

D2 = Tr
(
X ′0X0

)
+ Tr

(
Z ′1Z1

)
− 2 Tr

(
Z ′1X0

)
= 2T − 2 Tr

(
Z ′1X0

)
and remembering that Tr(Z ′1X0) is a scalar product for the (n, d) matrices vector
subspace, it comes that Tr(Z ′1X0) takes values over [−T ;T ], then D2 takes values
over [0; 4T ]. But, the trivial permutation P = I is always allowed, and the minimized
D2 cannot exceed the D2 value obtained for both P = I and R = I , which is
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Tr((X0 − X1)(X0 − X1)′) = 2T − 2 Tr(X ′1X0). Assuming now that X0 is in its
principal components axis (i.e., V00 is diagonal) and that X1 is generated from X0

with replacing one of its column by its opposite, this column being associated to the
smallest eigenvalue of V00. Thus, L(1),L(2), . . . ,L(d) being the common eigenvalues
of V00 and V11 arranged in decreasing order, then

Tr
(
X ′1X0

)
= L(1) + L(2) + · · ·+ L(d− 1)− L(d) and

D2 = 2T − 2 Tr
(
X ′1X0

)
= 4L(d).

D2/T is a monotonic function of L(d), which is maximized when all eigenvalues
are equal to T/d. Thus D2/T is upper bounded by 4/d, the minimized D2 varies
over [0; 4T/d] and Chi varies over [0; 1], the zero value corresponding to an achiral
compound perfectly superimposed to its inverted image. Monodimensional sets are
examined in appendix 1.

All subsequent sections involve planar sets, i.e., d = 2 and Chi = D2/(2T ).

3. The optimal rotation for planar sets

In this section, the centering condition is not assumed, and X1 is not an inverted
image of X0. Although previously established [14], the optimal rotation has to be
rewritten in matricial form. The identity permutation P = I is assumed, but the final
result will be valid for any P with by replacing X1 by PX1.

The base vectors are e′1 = (1, 0) and e′0 = (0, 1), and we define Π = e2e
′
1− e1e

′
2,

which is the rotation matrix of angle +90◦, mapping any vector to its direct orthogonal
image. A general rotation R of angle r can be written R = I cos(r) + Π sin(r). Let
be C = Tr(V10), S = Tr(ΠV10) and E being the square root of C2 +S2, which means
that

E2 = Tr
(
V10V

′
10

)
+ 2 Det(V10). (2)

We have

D2 = Tr
((
X0 −X1R

′)(X0 −X1R
′)′) = Tr

((
X0 −X1R

′)′(X0 −X1R
′)).

Thus, D2 = 2T − 2C cos(r) − 2S sin(r), r being the unknown variable. The first
derivative is grad(D2) = 2C sin(r)−2S cos(r) and the second derivative is Hess(D2) =
2C cos(r) + 2S sin(r). The minimum is obtained when cos(r) = C/E and sin(r) =
S/E, with D2 = 2(T − E) and Hess(D2) = 2E. The maximum is obtained when
cos(r) = −C/E and sin(r) = −S/E, with D2 = 2(T + E) and Hess(D2) = −2E.
Both stationary points are reached when tg(r) = S/C. When C = S = 0, D2 is
constant for all R.

The minimized sum of squared distances is thus

D2 = 2(T −E). (3)

This sum ranges from 0 to 2T , and D2/(2T ) ranges from 0 to 1.
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4. Existence of a symmetry axis

In this section, the centering condition is not assumed, and X1 is an inverted
image of X0 generated by an orthogonal transformation Q, i.e., X1 = X0Q

′, with
Det(Q) = −1. The correspondence between X0 and X1 is not used, thus P = I
is assumed. X1 is rotated, but the rotation matrix R is not assumed to have any
optimality property.

Let us consider the matrix RQ(e2e
′
2 − e1e

′
1). This a rotation matrix because

e2e
′
2 − e1e

′
1 is an orthogonal matrix with negative determinant. Let r be the angle

associated to RQ(e2e
′
2 − e1e

′
1), and v be the unit vector: v′ = (cos(r/2), sin(r/2)).

The matrix I − 2vv′ is that of a symmetry operator, v being normal to the symmetry
axis. We have

X1R
′(I − 2vv′)′ = X0

(
e2e
′
2 − e1e

′
1

)(
e2e
′
2 − e1e

′
1

)′
Q′R′(I − 2vv′).

Expressing the elements of I − 2vv′ with sin(r) and cos(r), it comes that(
RQ
(
e2e
′
2 − e1e

′
1

))′
(I − 2vv′) =

(
e2e
′
2 − e1e

′
1

)′
and then X1R

′(I − 2vv′)′ = X0, meaning that X0 and X1R
′ are symmetrical.

This can be also prooved using Πv instead of v and r being the angle associated
to RQ(e1e

′
1 − e2e

′
2) rather to RQ(e2e

′
2 − e1e

′
1).

The existence of a symmetry axis is thus a general property, which has noth-
ing to deal with optimality conditions. However, the symmetry can be destroyed if
translations are involved, but that does not arise when both X0 and X1 are centered.

5. The optimal rotation for enantiomers

In this section, the centering condition is not assumed, and X1 is an inverted
image of X0 generated by an orthogonal transformation Q: X1 = X0Q

′ and Det(Q) =
−1. The rotation R is the optimal one established in section 3, and is parametrized
by the permutation matrix associated to one correspondence between X0 and X1, i.e.,
X1 = PX0Q

′ and V10 = QX ′0P
′X0.

For simplification, X0 is now noted X.
Using equation (2) from section 3, we get the expression of E2:

E2 = Tr
(
(QX ′P ′X)(QX ′P ′X)′

)
+ 2 Det(QX ′P ′X),

from which

E2 = Tr(X ′P ′XX ′PX)− 2 Det(X ′PX). (4)

Then, x and y being, respectively, the first and second column of X,

E2 = (x′Px− y′Py)2 + (x′Py + y′Px)2. (5)

Setting M = (P + P ′)/2, we get

E2 =
(
(x+ y)′M (x− y)

)2 − 4(x′My)2,
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and then

E2 = (x′Mx+ y′My)2 − 4
(
(x′Mx)(y′My)− (x′My)(y′Mx)

)2
,

which can be written as

E2 =
(

Tr(X ′MX)
)2 − 4 Det(X ′MX) (6)

or, alternatively, L(1) and L(2) being the eigenvalues of the symmetric matrix X ′MX
arranged in decreasing order:

E = L(1)− L(2). (7)

As seen in equation (3), the optimal sum of squared distances for a given set X
is D2 = 2(T − E). Equation (7) means that, for a given permutation P , it depends
only on the difference of the eigenvalues of X ′MX. When all allowed permutations
are considered, it is needed to keep the one such L(1)− L(2) is the largest. It should
be also noted that E depends on M = (P + P ′)/2 rather than P .

6. The extremal values reached for a fixed permutation

All the conditions of the preceding section are assumed to stand. Only one
permutation P is considered: P is a parameter and X is the variable.

From equation (3), we know that the extrema of D2/(2T ) are those of E/T , or
alternatively, are those (T − E)/(T + E), which is the ratio of the minimized sum
of squared distances to the maximized sum of squared distances (see section 3). For
simplicity, E2/T 2 will be considered. Expanding equation (6) gives

E2 = (x′Mx− y′My)2 + 4(x′My)2, (8)

then

E2/T 2 =
(
(x′Mx− y′My)2 + 4(x′My)2)/(x′x+ y′y)2. (9)

This function has all derivatives continuous, except for T = 0 which is equivalent to
X = 0 and has no interest. The extrema can be reached by computing the gradient,
which can be splitted in two parts: one related to the derivation for x variable, and
the other for y variable. Setting the two parts to zero and dividing by 4T leads to

T
(
(x′Mx− y′My)Mx+ 2(x′My)My

)
−E2x= 0, (10)

T
(
(y′My − x′Mx)My + 2(x′My)Mx

)
−E2y= 0. (11)

Multiplying (10) by (Mx)′ and (11) by (My)′ and substracting the two resulting
equations leads to

(x′Mx− y′My)
(
T (x′M ′Mx+ y′M ′My)−E2) = 0. (12)
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Multiplying (10) by (My)′ and (11) by (Mx)′ and adding the two resulting equations
leads to

(x′My)
(
T (x′M ′Mx+ y′M ′My)−E2) = 0. (13)

Looking at both equations (12) and (13), either x′Mx− y′My = 0 and x′My = 0, or
T (x′M ′Mx+ y′M ′My) = E2.

The first situation means that X ′MX is proportional to the identity matrix, and is
such that E = 0 and D2 = 2T , corresponding to the absolute maximum of D2/(2T ).

The second situation can be further explicited when P is a symmetric permutation,
i.e., P = P ′ = M . The condition T (x′M ′Mx+y′M ′My) = E2 reduces to T 2 = E2,
then D2 = 0, which corresponds to a perfect alignment.

7. The most achiral triangles

The centering condition is now assumed to be satisfied, and the inverted image
of X is again generated by an orthogonal transformation with negative determinant. All
allowed permutations P are considered. For each permutation, D has been minimized
with the optimal rotation established in section 3. For a given set X, the chiral index
Chi = D2/(2T ) is then the smallest value of D2/(2T ) among all allowed permutations.

As mentioned in the previous section, D2/(2T ) has all continuous derivatives
(except for X = 0) when the permutation is fixed, and T does not depend on this
permutation.

The set X is now variable. The maxima of Chi are thus located either among
those of D2/(2T ) for individual permutations, or are located at singularities occurring
when D2/(2T ) takes the same value for at least two permutations.

Only triangles are now considered: n = 3. There is only three situations: all
vertices are unequivalent, or two vertices are equivalent, or all three vertices are
equivalent.

7.1. All vertices are unequivalent

There is only one allowed permutation: P = I . We have also M = P = P ′ = I .
Using the result of section 6, there is two situations for the extrema: either E = 0 and
X ′X is proportional to the identity matrix, or T 2 = E2 and D2 = 0 which corresponds
to a perfect alignment – this is an absolute minimum of Chi, not a maximum.

The absolute maximum is such that X ′X is proportional to I , and Chi = 1. It is
reached only by an equilateral triangle – see appendix 2.

7.2. Two equivalent vertices

We assume that the equivalent vertices are labelled 2 and 3. There is two allowed
permutations: I and P , P being a symmetric matrix such that P (1, 1) = P (2, 3) =
P (3, 2) = 1, all the 6 other elements being zero. The maximum of D2/(2T ) for the
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identity permutation is, as shown in subsection 7.1, reached by an equilateral triangle,
but this latter is perfectly superimposed on itself when the correspondence is P : D = 0
and Chi = 0. This is an absolute minimum of Chi, not a maximum. The extremum of
D2/(2T ) for the symmetric permutation P is, accordingly to the results of section 7,
either such that X ′MX is proportional to I , or is such that D = 0, corresponding to
a perfect alignment.

Let us look at the situation where

X ′MX = (x′Mx)I = (y′My)I.

We define the 3 rows and 3 columns square matrix W such that its first column
contains the vector 1 and such that the remaining block contains X. We note that
M = P = P ′ and that 1 is an eigenvector of M = P : M1 = 1. The center-
ing condition 1′X = 0 shows that W ′MW is a diagonal matrix with determinant
equal to (1′M1)(x′Mx)(y′My) = 3(x′Mx)2. But this determinant is also equal to
Det(W ′) Det(M ) Det(W ) = −(Det(W ))2 because Det(P ) = −1. The only possible
sign for this determinant is thus zero, which means that X ′MX = 0 and also that
Det(W ) = 0. But Det(W ) is twice the signed area of X, then X is not a two-rank
matrix: the points are aligned, and they should lead to a perfect superposition when
the identity permutation is used.

Thus the maximum of Chi can be located only at singularities occurring when
D2/(2T ) takes the same value for the two permutations.

The symmetric matrix P has an orthonormal basis of eigenvectors

u′1 = (1, 0, 0), u′2 =
(
0, 21/2/2, 21/2/2

)
and u′3 =

(
0, 21/2/2,−21/2/2

)
,

associated to the respective eigenvalues 1, 1 and −1. The two columns of X can be
expressed in this orthonormal basis:

X = u1a
′
1 + u2a

′
2 + u3a

′
3, (14)

a1, a2 and a3 being the unknown bicomponents vectors. Thus, we have

X ′X = a1a
′
1 + a2a

′
2 + a3a

′
3 and X ′PX = a1a

′
1 + a2a

′
2 − a3a

′
3.

The centering condition is X ′1 = 0. Thus,

a1 + 21/2a2 = 0. (15)

Reporting in the expressions of X, X ′X and X ′PX leads to

X ′X = 3a2a
′
2 + a3a

′
3, (16)

X ′PX = 3a2a
′
2 − a3a

′
3. (17)

The vector a2 is not null, because, from (15) we would get a1 = 0, and from the
centering condition, a3 = 0 then X = 0. Setting the equality of D2/(2T ) for the two
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permutations is equivalent to set the equality of the two E2 values. Using equation (6),
we have (

Tr(X ′X)
)2 − 4 Det(X ′X) =

(
Tr(X ′PX)

)2 − 4 Det(X ′PX). (18)

Expanding (18) with the expressions get in equations (16) and (17), and after some
simplifications, it yields (

a′3a2
)2

=
(
a′3Πa2

)2
. (19)

The sum of the two members of equation (19) is (a′2a2)(a′3a3). Equation (19) can
be understood as the equality between the squared sinus and the squared cosinus of
the vectors a2 and a3. It can be explicited as follows. The vectors a2 and Πa2

are orthogonal and non-null, thus a3 is expressable as a linear combination of them:
a3 = ba2 +cΠa2. Reporting that in (18) gives b2(a′2a2)2 = c2(a′2a2)2, and then c = sb,
with s = ±1. Then

a′3a3 = (ba2 + sbΠa2)′(ba2 + sbΠa2) = 2b2a′2a2,

i.e., a′3a3 = 2b2a′2a2. We define k as the ratio of the norm of a3 to that of a2:

K =
(
a′3a3

)
/
(
a′2a2

)
and k = K1/2. (20)

Then we have 2b2 = K and b = ±k21/2/2, and

a3 = ±k
(
21/2/2

)
(a2 + sΠa2). (21)

Substituting (21) in (16) and (17),

X ′X = 3a2a
′
2 + (K/2)

(
a2a
′
2 + Πa2a

′
2Π′ + sΠa2a

′
2 + sa2a

′
2Π′
)
, (22)

X ′PX = 3a2a
′
2 − (K/2)

(
a2a
′
2 + Πa2a

′
2Π′ + sΠa2a

′
2 + sa2a

′
2Π′
)
. (23)

The traces are

Tr(X ′X) = (3 +K)
(
a′2a2

)
, (24)

Tr(X ′PX) = (3−K)
(
a′2a2

)
. (25)

The determinant is obtained from the square matrix W introduced previously, contain-
ing the 1 vector as first column, and X as the remaining block. From the centering
condition 1′X = 0, we see that W ′PW is a block-diagonal matrix, one containing the
real value 3 as single element, and the other containing X ′PX. Remembering that
Det(P ) = −1, we get

Det(W ′PW ) = −
(

Det(W )
)2

= 3 Det(X ′PX).

Similarly, Det(W ′IW ) = (Det(W ))2 = 3 Det(X ′X), and thus

Det(X ′PX) = −Det(X ′X). (26)
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Substituting (24)–(26) in (18) gives

(3 +K)
(
a′2a2

)2 − 4 Det(X ′X) = (3−K)
(
a′2a2

)2
+ 4 Det(X ′X),

and we get the determinant

Det(X ′X) = (3/2)K
(
a′2a2

)2
. (27)

The final common E2 expression is, using (27) with (24) or (25),

E2 =
(
9 +K2)(a′2a2

)2
. (28)

And because T = Tr(X ′X),

E2/T 2 =
(
9 +K2)/(3 +K)2, (29)

and, from equation (3),

D2/2T = 1−
(
9 +K2)1/2

/(3 +K). (30)

There is no more constraint: k is a free parameter. The coordinates of this family of
triangles is obtained by substituting (15) and (21) in (14):

X = −21/2u1a
′
2 + u2a

′
2 ± k

(
21/2/2

)
u3(a2 + sΠa2)′. (31)

The shape of any triangle of this family does not depend on the orientation of X.
Applying a rotation R to X, and from the commutativity of the product ΠR = RΠ,
we get

X = −21/2u1(Ra2)′ + u2(Ra2)′ ± k
(
21/2/2

)
u3
(
(I + sΠ)(Ra2)

)′
.

The rotation being free, any orientation of the vector Ra2 can be selected whithout
shape modification, and the normalization of a2 acts as a size parameter. Selecting
Ra2 = (0, 1) is thus convenient. The coordinates of the vertices are either

x1 =
(
− 21/2, 0

)
, x2 =

((
21/2 + k

)
/2, sk/2

)
, x3 =

((
21/2 − k

)
/2,−sk/2

)
or

x1 =
(
− 21/2, 0

)
, x2 =

((
21/2 − k

)
/2,−sk/2

)
, x3 =

((
21/2 + k

)
/2, sk/2

)
.

Setting s from +1 to −1 converts X to its inverted image (ordinates are changed to
their opposite), and converting k to −k is just relabelling x2 to x3 and x3 to x2. Thus,
taking ±k or s = ±1 is not important.

The final shape of the set is described by

x1 =
(
− 21/2, 0

)
, x2 =

((
21/2 + k

)
/2, k/2

)
,

(32)
x3 =

((
21/2 − k

)
/2,−k/2

)
.

The optimum is obtained by derivation of (29) or (30), and is reached for K = 3,
such that E2/T 2 = 1/2 and Chi = D2/(2T ) = 1− 21/2/2. The most achiral triangle
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Figure 1. The most achiral triangle and its optimally superposed enantiomer with two equivalent vertices.
The latter are lying opposite to the smallest and the largest angles.

has the shape given by equation (32) for k = 31/2. The squared lengths of the edges
and the squared norms of the points are

(x2 − x1)′(x2 − x1) = (3/2)
(
4 + 61/2) = 3

(
x′2x2

)
,

(x3 − x2)′(x3 − x2) = (3/2)4 = 3
(
x′1x1

)
,

(x1 − x3)′(x1 − x3) = (3/2)
(
4− 61/2) = 3

(
x′3x3

)
.

The proportionality between the lengths of the edges and the distances vertex–midpoint
is remarkable. The squared lengths ratio is near 4.160 : 2.580 : 1, and the angles at the
vertices 1, 2 and 3 are, respectively, near 50.768◦, 28.833◦ and 100.398◦ (see figure 1).

Random triangles were generated following the uniform distribution over a
square. The estimated optimal E2/T 2 ratio was indeed converging to its theoreti-
cal value, and the estimated optimal squared length ratio too (see table 1).

7.3. Three quivalent vertices

All the three vertices are equivalent, thus the 3! permutations are allowed. This
set of six permutations is partitioned in three subsets. One contains the identity per-
mutation. The second contains the three symmetric permutations, namely P12, P23 and
P31 (Pij being such that the equivalents vertices are i and j). The last contains two
permutations, one being the transposed of the other, namely, P and P ′, and both being
such that P + P ′ = I − 1 · 1′.
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Table 1
Sampling of E2/T 2 for two equivalent vertices.

Triangles P = I E2/T 2 Squared lengths ratio

3 yes 0.762391 5.627330 8.639524
12 no 0.586388 4.826188 5.031602
93 yes 0.512625 2.524142 4.186255

218 yes 0.506785 2.034799 3.766179
5373 no 0.501131 2.785811 4.295409

16749 no 0.500653 2.677786 4.223636
44955 yes 0.500241 2.607813 4.180106

525804 yes 0.500072 2.627870 4.192799
1040385 yes 0.500024 2.581866 4.161148
5989420 no 0.500011 2.571022 4.153483

22865206 yes 0.500006 2.584256 4.162699
140327200 yes 0.500003 2.583488 4.162154

Let us look first at these latter. Each of them has the same matrixM = (P+P ′)/2,
or equivalently M = (I−1·1′)/2. Reporting this in equation (6) and using the centering
condition gives

E2 =
(

Tr(X ′MX)
)2 − 4 Det(X ′MX) =

((
Tr(X ′X)

)2 − 4 Det(X ′X)
)
/4. (33)

Equation (33) means that the E value obtained for P or P ′ is always half the E value
obtained for the identity permutation. Thus, the best superposition never occurs for
the permutations P or P ′, and these latter are never used to compute the chiral index.

Then we have only the identity permutation and the three symmetric permutations.
As shown in subsection 7.2, the maximum of Chi can be located only at singularities
occurring when D2/(2T ) takes the same value for at least two permutations.

Let us look first at the situation where the identity permutation is not one of these
two permutations. From equation (26), we know that

Det
(
X ′P12X

)
= Det

(
X ′P23X

)
= Det

(
X ′P31X

)
= −Det(X ′X).

The two permutations leading to the same D2 value, i.e., to the same E2 value, are
assumed to be P12 and P23 without loss of generality (the vertices can be relabelled to
get that). From equation (6), P12 and P23 must therefore be such that |Tr(X ′P12X)| =
|Tr(X ′P23X)|. We have, also, P12 + P23 + P31 = 1 · 1′, and from the centering
condition,

Tr
(
X ′P12X

)
+ Tr

(
X ′P23X

)
+ Tr

(
X ′P31X

)
= 0.

Thus, either

Tr
(
X ′P12X

)
+ Tr

(
X ′P23X

)
= Tr

(
X ′P31X

)
= 0, (34)

or

2 Tr
(
X ′P12X

)
= 2 Tr

(
X ′P23X

)
= −Tr

(
X ′P31X

)
= 0,
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which leads to get |Tr(X ′P31X)| > |Tr(X ′P31X)| unless the three traces are null.
This latter inequality cannot occur, because the highest E2 value cannot be those get
with P31. We look now at equation (34), which stands also when the three traces are
null. Using the basis of eigenvectors of P23 and equations (14) and (15), we have

X ′P12X =
(
−3a2a

′
2 + a3a

′
3 − 3a2a

′
3 − 3a3a

′
2

)
/2, (35)

X ′P31X =
(
−3a2a

′
2 + a3a

′
3 + 3a2a

′
3 + 3a3a

′
2

)
/2, (36)

from which

Tr
(
X ′P12X

)
=
(
−3a′2a2 + a′3a3 − 6a′2a3

)
/2, (37)

Tr
(
X ′P31X

)
=
(
−3a′2a2 + a′3a3 + 6a′2a3

)
/2. (38)

From equation (34), Tr(X ′P31X) = 0. Substituting it in (38) leads to 6a′2a3 =
3a′2a2−a′3a3, which is in turn substituted in (37) to give Tr(X ′P12X) = −3a′2a2+a

′
3a3.

From (16), we know that Tr(X ′X) = 3a′2a2 + a′3a3, and the highest E2 value must be
that of P12. This is possible only if either a′2a2 = 0 or a′3a3 = 0, both meaning that
X ′X is a one-rank matrix, in which case the three vertices are aligned.

The assumption that the identity is not one of the permutations leading to the most
achiral index is therefore false. We return now to the assumptions of section 7.2, and
equations (27) to (32) stands (the vertices are labelled such that P23 is the permutation
having the highest E2 value). Substituting (20) and (21) in (37) and (38),

Tr
(
X ′P12X

)
=
(
a′2a2

)(
k2 − 3− 21/2ck3

)
/2, (39)

Tr
(
X ′P31X

)
=
(
a′2a2

)(
k2 − 3 + 21/2ck3

)
/2, (40)

where the sign constant c is equal to ±1.
From equation (29), we know that E2/T 2 is a function of K = k2 decreasing

monotonically from 1 at K = 0 to 1/2 at K = 3, then increasing monotonically
to 1 when K goes to infinity. The minimum will be obtained for the K value closest
to 3, such that |Tr(X ′X)| = |Tr(X ′P23X)| is greater or equal to |Tr(X ′P12X)| and
|Tr(X ′P31X)|. Both these inequalities are such that |(k2−3±2k3)/2| must not exceed
|K − 3|. Expanding leads to a quartic polynomial with roots satisfying(

K2 − 24K + 9
)(
K2 − 8K + 9

)
= 0. (41)

The roots of K2 − 8K + 9 do not satisfy the inequalities, and the associate shape is,
according to equation (32), an isocele triangle (which is thus achiral). Both roots of
K2−24K+9 are acceptable, and both lead to E2/T 2 = 4/5 and Chi = 1−2 ·51/2/5.
The final shape of the set described by equation (32) is the same for both K values.
From (32), the squared lengths of the edges are

(x2 − x1)′(x2 − x1) =
(
k2 + 9 + 3k21/2)/2, (42)

(x3 − x2)′(x3 − x2) = 2k2, (43)

(x1 − x3)′(x1 − x3) =
(
k2 + 9− 3k21/2)/2, (44)
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where k = (±3 + 151/2)21/2/2. Taking the largest k value, the lengths of the edges
and the squared norms of the points are

(x2 − x1)′(x2 − x1) = 15 + 3 · 151/2 = 3
(
x′3x3

)
,

(x3 − x2)′(x3 − x2) = 24 + 6 · 151/2 = 3
(
x′2x2

)
,

(x1 − x3)′(x1 − x3) = 6 = 3
(
x′1x1

)
.

And for the smallest largest k value,

(x2 − x1)′(x2 − x1) = 6 = 3
(
x′1x1

)
,

(x3 − x2)′(x3 − x2) = 24− 6 · 151/2 = 3
(
x′3x3

)
,

(x1 − x3)′(x1 − x3) = 15− 3 · 151/2 = 3
(
x′2x2

)
.

The remarkable proportionality between the lengths of the edges and the norms of
the points stands, as found in subsection 7.2, but with a different labelling. This
proportionality stands with any labelling for the equilateral triangle of subsection 7.1.
Having two squared distances being three times any of the two squared norms implies
that the third squared distance is three times the remaining norm, because the sum of
the squared distances is three times the inertia for any triangle.

The squared lengths ratio is, for both k values, (4 + 151/2) : (5 + 151/2)/2 : 1,
which is near 7.873 : 4.436 : 1, and the angles at the vertices are near 16.902◦, 37.761◦

and 125.337◦ (see figure 2). These values are sometimes close, but not equal to those
get by Weinberg and Mislow with distance functions [15]. They are also close to the
experimental triangle of Zabrodsky and Avnir [16]. One of the reviewer noticed that
the most achiral triangle coincides with that of Zimpel [19].

Random triangles were generated as in subsection 7.2. The estimated optimal
E2/T 2 ratio and the estimated optimal squared length ratio were indeed converging to
their theoretical value (see table 2).

Figure 2. The most achiral triangle and its optimally superposed enantiomer with three equivalent vertices.
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Table 2
Sampling of E2/T 2 for three equivalent vertices.

Triangles P = I E2/T 2 Squared lengths ratio

3 no 0.883215 5.627330 8.639524
5 no 0.832453 5.206245 8.737907

67 no 0.829762 3.792317 6.929571
102 no 0.829266 3.517308 6.034729
123 yes 0.828693 4.304882 7.977873
158 no 0.816909 4.819461 8.310065
528 no 0.806296 4.305131 7.701969

2612 no 0.805984 4.227625 7.464235
2921 no 0.805262 4.319526 7.709475
6857 yes 0.802655 4.444056 7.904681
7242 yes 0.801833 4.459160 7.913541

33927 yes 0.801143 4.450624 7.898254
81025 no 0.801061 4.421007 7.863786

186734 yes 0.800720 4.440413 7.883574
551586 no 0.800572 4.417748 7.838096
648856 no 0.800560 4.422007 7.849967
682287 no 0.800300 4.439599 7.874778

3619635 no 0.800287 4.427296 7.856102
4429230 no 0.800078 4.434256 7.868293

13800935 no 0.800072 4.438385 7.875361
18489622 no 0.800026 4.435565 7.871174

228057215 no 0.800021 4.435795 7.871560

8. Conclusions

The chiral index applies for any d-dimensional finite set of points. Its properties
have been examined for planar sets. Spatial sets will be treated in a forthcoming paper.
The number of allowed permutations ranges from 1 to n!. In this extreme situation,
all atoms are equivalent. Using the chemical nature of atoms and bonds should reduce
greatly this combinatorial difficulty. Continuous sets are not handled. For these, other
techniques should be used, such as those using Hausdorff distances.

Appendix 1. Monodimensional sets

When d = 1, X1 = −X0 and X0 is a n rows vector denoted by x and which is
not assumed to be centered. P is any permutation and P0 is the optimal one. A is the
difference between the two sums of squared distances:

A = 2(x′x+ x′Px)− 2
(
x′x+ x′P0x

)
= 2
(
x′Px− x′P0x

)
.

P0 being optimal, A is a non-negative quantity.

Lemma 1. P0 is symmetric.
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Proof. A permutation is such that each vertex has exactly one predecessor and one
successor. A symmetric permutation contains only 1-cycles (i.e., the vertex is associ-
ated to itself) and 2-cycles. We assume that it exists a k-cycle in P0, where k > 2.
Let x(a) be the smallest element of the cycle and x(b) be the largest. Their respective
predecessors are x(a1) and x(c1) and their respective successors are x(a2) and x(c2).
We consider the alternate permutation P such that x(a) is paired to x(c), x(c2) suc-
ceeds to x(a1) and x(a2) succeeds to x(c1). P is again an allowed permutation and
the difference between the sums of squared distances is

A= 2
(
x(a1)x(c2) + x(c1)x(a2) + 2x(a)x(c)

− x(a1)x(a)− x(a)x(a2)− x(c1)x(c)− x(c)x(c2)
)
,

A= 2
((
x(a1)− x(c)

)(
x(c2)− x(a)

)
+
(
x(a2)− x(c)

)(
x(c1)− x(a)

))
.

A cannot be non-negative unless either x(a1) = x(a2) = x(c), or x(c1) = x(c2) =
x(a), or x(a1) = x(c) and x(c1) = x(a), or x(c2) = x(a) and x(a2) = x(c). Each
of these four pairs of equalities means that there are no more two vertices in the
cycle. Thus, the optimal permutation has only 1-cycles and 2-cycles: P0 is symmetric.

�

We assume now that all n vertices are equivalent. For simplicity, the set is sorted
in increasing order.

Lemma 2. The optimal permutation P0 associates the vertices x(i) and x(j), with
j = n+ 1− i and i varying from 1 to n.

Let x(a) and x(b) be the vertices paired with x(1) and x(n), respectively. We
consider the alternate permutation P where x(1) is paired to x(n) and x(a) is paired
to x(b). P is again an allowed permutation and the difference between the sums of
squared distances is

A= 4
(
x(1)x(n) + x(a)x(b) − x(1)x(a)− x(b)x(n)

)
,

A= 4
(
x(1)− x(b)

)(
x(n)− x(a)

)
.

A cannot be non-negative unless either x(1) = x(b) or x(a) = x(n), both meaning that
x(1) and x(n) are already paired. Iterating for the next smallest and largest elements,
we see that the optimal permutation has exactly n/2 2-cycles and one 1-cycle if n is
odd. It associates the smallest and the largest values, then the next smallest and the
next largest and so on.

When there are non-equivalent vertices, the set is partitioned in subsets such that
all vertices associated to a common block are equivalent. Reusing lemma 2 for each
subset, we see that the optimal permutation is such that the smallest element of a
subset is associated to the greatest one, the second smallest element is associated to
the second greatest one and so on. The final optimal permutation is symmetric even
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when the labelling is modified, and the number of non zero diagonal values of P is
equal to the number of subsets with odd cardinality.

When all vertices are unequivalent, P = I , D2 = 4T and Chi = 1.

Appendix 2. Isotropy of the regular d-simplex

Let X be a centered d-simplex in the d-dimensional euclidean space, v a real
constant and I the identity matrix. The following property stands:

Property. X ′X = vI ⇔ the simplex is regular.

Proof. X is an array containing d columns and n = d+1 rows, and vI is n times its
observed variance matrix. Obviously, v cannot be negative because it is the squared
norm of each column of X. If v = 0, all points are lying at the origin: this is a
degenerated regular simplex. We can assume now v > 0, and set v = s2 with s > 0.

Let m be the square root of n. Let W be the n rows and n columns square
matrix such that its first column contains the vector 1 divided by m (i.e., all its n
elements takes the real value 1/m), and such that the remaining block contains X/s
(i.e., all elements of X are divided by s).

The centering condition 1′X = 0 shows that W ′W = I and thus W is an
orthogonal matrix, which satisfies also to WW ′ = I . This can be written as (1 ·
1′)/n + XX ′/v = I , and then X ′X = v(I − 1 · 1′/n). Let x1,x2, . . . ,xn be the n
points, i.e., the transposed rows of X. We have for any xi, x′ixi = v(1 − 1/n), and
for any distincts xi and xj , x′ixj = −v/n. The squared length of an edge is always
equal to (xi − xj)′(xi − xj) = 2v, meaning that the d-simplex is regular.

Conversely, prooving that the regular d-simplex has a variance matrix propor-
tional to I is obvious, and of course this is true for any orthogonal transformation
of X: (XQ′)′(XQ) = Q′(vI)Q = vI . �
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